Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.931
Filtrar
1.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
2.
Elife ; 122024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527106

RESUMO

Cells fine-tune microtubule assembly in both space and time to give rise to distinct edifices with specific cellular functions. In proliferating cells, microtubules are highly dynamics, and proliferation cessation often leads to their stabilization. One of the most stable microtubule structures identified to date is the nuclear bundle assembled in quiescent yeast. In this article, we characterize the original multistep process driving the assembly of this structure. This Aurora B-dependent mechanism follows a precise temporality that relies on the sequential actions of kinesin-14, kinesin-5, and involves both microtubule-kinetochore and kinetochore-kinetochore interactions. Upon quiescence exit, the microtubule bundle is disassembled via a cooperative process involving kinesin-8 and its full disassembly is required prior to cells re-entry into proliferation. Overall, our study provides the first description, at the molecular scale, of the entire life cycle of a stable microtubule structure in vivo and sheds light on its physiological function.


Assuntos
Cinesinas , Microtúbulos , Cinesinas/genética , Cinetocoros , Divisão Celular , Saccharomyces cerevisiae , Proteínas Associadas aos Microtúbulos
3.
Cell Commun Signal ; 22(1): 199, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553728

RESUMO

KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.


Assuntos
Citocinese , Cinesinas , Animais , Camundongos , Cinesinas/genética , Cinesinas/metabolismo , Meiose , Microtúbulos/metabolismo , Oócitos/metabolismo
4.
Cell Death Dis ; 15(3): 222, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493150

RESUMO

Unlike normal cells, cancer cells frequently exhibit supernumerary centrosomes, leading to formation of multipolar spindles that can trigger cell death. Nevertheless, cancer cells with supernumerary centrosomes escape the deadly consequences of unequal segregation of genomic material by coalescing their centrosomes into two poles. This unique trait of cancer cells presents a promising target for cancer therapy, focusing on selectively attacking cells with supernumerary centrosomes. Nek2A is a kinase involved in mitotic regulation, including the centrosome cycle, where it phosphorylates linker proteins to separate centrosomes. In this study, we investigated if Nek2A also prevents clustering of supernumerary centrosomes, akin to its separation function. Reduction of Nek2A activity, achieved through knockout, silencing, or inhibition, promotes centrosome clustering, whereas its overexpression results in inhibition of clustering. Significantly, prevention of centrosome clustering induces cell death, but only in cancer cells with supernumerary centrosomes, both in vitro and in vivo. Notably, none of the known centrosomal (e.g., CNAP1, Rootletin, Gas2L1) or non-centrosomal (e.g., TRF1, HEC1) Nek2A targets were implicated in this machinery. Additionally, Nek2A operated via a pathway distinct from other proteins involved in centrosome clustering mechanisms, like HSET and NuMA. Through TurboID proximity labeling analysis, we identified novel proteins associated with the centrosome or microtubules, expanding the known interaction partners of Nek2A. KIF2C, in particular, emerged as a novel interactor, confirmed through coimmunoprecipitation and localization analysis. The silencing of KIF2C diminished the impact of Nek2A on centrosome clustering and rescued cell viability. Additionally, elevated Nek2A levels were indicative of better patient outcomes, specifically in those predicted to have excess centrosomes. Therefore, while Nek2A is a proposed target, its use must be specifically adapted to the broader cellular context, especially considering centrosome amplification. Discovering partners such as KIF2C offers fresh insights into cancer biology and new possibilities for targeted treatment.


Assuntos
Centrossomo , Neoplasias , Humanos , Ciclo Celular , Morte Celular , Centrossomo/metabolismo , Análise por Conglomerados , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitose , Neoplasias/genética , Neoplasias/metabolismo , Fuso Acromático/metabolismo
5.
J Cell Mol Med ; 28(7): e18182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498903

RESUMO

Chromosome instability (CIN) is a common contributor driving the formation and progression of anaplastic thyroid cancer (ATC), but its mechanism remains unclear. The BUB1 mitotic checkpoint serine/threonine kinase (BUB1) is responsible for the alignment of mitotic chromosomes, which has not been thoroughly studied in ATC. Our research demonstrated that BUB1 was remarkably upregulated and closely related to worse progression-free survival. Knockdown of BUB1 attenuated cell viability, invasion, migration and induced cell cycle arrests, whereas overexpression of BUB1 promoted the cell cycle progression of papillary thyroid cancer cells. BUB1 knockdown remarkably repressed tumour growth and tumour formation of nude mice with ATC xenografts and suppressed tumour metastasis in a zebrafish xenograft model. Inhibition of BUB1 by its inhibitor BAY-1816032 also exhibited considerable anti-tumour activity. Further studies showed that enforced expression of BUB1 evoked CIN in ATC cells. BUB1 induced CIN through phosphorylation of KIF14 at serine1292 (Ser1292 ). Overexpression of the KIF14ΔSer1292 mutant was unable to facilitate the aggressiveness of ATC cells when compared with that of the wild type. Collectively, these findings demonstrate that the BUB1/KIF14 complex drives the aggressiveness of ATC by inducing CIN.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , Humanos , Carcinoma Anaplásico da Tireoide/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos Nus , Peixe-Zebra/metabolismo , Instabilidade Cromossômica , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Proteínas Oncogênicas/genética , Cinesinas/genética
6.
Mol Genet Genomics ; 299(1): 38, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517563

RESUMO

Kinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.) will be beneficial for both understanding the function of kinesin protein and assisting the fiber improvement. Here, we aimed to identify the key kinesin genes present in cotton by combining genome-wide expression profile data, association mapping, and public quantitative trait loci (QTLs) in upland cotton (G. hirsutum L.). Results showed that 159 kinesin genes, including 15 genes of the kinesin-13 gene subfamily, were identified in upland cotton; of which 157 kinesin genes can be traced back to the diploid ancestors, G. raimondii and G. arboreum. Using a combined analysis of public QTLs and genome-wide expression profile information, there were 29 QTLs co-localized together with 28 kinesin genes in upland cotton, including 10 kinesin-13 subfamily genes. Genome-wide expression profile data indicated that, among the 28 co-localized genes, seven kinesin genes were predominantly expressed in fibers or ovules. By association mapping analysis, 30 kinesin genes were significantly associated with three fiber traits, among which a kinesin-13 gene, Ghir_A11G028430, was found to be associated with both cotton boll length and lint weight, and one kinesin-7 gene, Ghir_D04G017880 (Gh_Kinesin7), was significantly associated with fiber strength. In addition, two missense mutations were identified in the motor domain of the Gh_Kinesin7 protein. Overall, the kinesin gene family seemingly plays an important role in cotton fiber and boll development. The exploited kinesin genes will be beneficial for the genetic improvement of fiber quality and yield.


Assuntos
Gossypium , Cinesinas , Gossypium/genética , Cinesinas/genética , Fibra de Algodão , Locos de Características Quantitativas/genética , Fenótipo , Celulose
7.
Nat Commun ; 15(1): 2029, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448418

RESUMO

The properties of single microtubules within the microtubule network can be modulated through post-translational modifications (PTMs), including acetylation within the lumen of microtubules. To access the lumen, the enzymes could enter through the microtubule ends and at damage sites along the microtubule shaft. Here we show that the acetylation profile depends on damage sites, which can be caused by the motor protein kinesin-1. Indeed, the entry of the deacetylase HDAC6 into the microtubule lumen can be modulated by kinesin-1-induced damage sites. In contrast, activity of the microtubule acetylase αTAT1 is independent of kinesin-1-caused shaft damage. On a cellular level, our results show that microtubule acetylation distributes in an exponential gradient. This gradient results from tight regulation of microtubule (de)acetylation and scales with the size of the cells. The control of shaft damage represents a mechanism to regulate PTMs inside the microtubule by giving access to the lumen.


Assuntos
Cinesinas , Microtúbulos , Acetilação , Cinesinas/genética , Acetilesterase , Processamento de Proteína Pós-Traducional
8.
J Bone Miner Res ; 39(3): 287-297, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477767

RESUMO

Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. By targeted gene sequencing analysis, we identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22 variant (c.443C>T or c.446G>A), although the spinal involvement appeared later and was less severe in patients with a recessive variant. Relatives harboring the c.146G>A variant at the heterozygous state were asymptomatic. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. RT-PCR and western blot analyses demonstrated that both dominant and recessive KIF22 variants do not affect KIF22 mRNA and protein expression in patient fibroblasts compared to controls. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations (CMD), related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts. Compared to controls, DMMB assay showed a significant decrease of total sulfated proteoglycan content in culture medium but not in the cell layer, and immunofluorescence demonstrated a strong reduction of staining for chondroitin sulfates but not for heparan sulfates, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis and place the lepto-SEMDJL in the CMD spectrum.


Heterozygous variants in KIF22, encoding a kinesin-like protein, are responsible for spondyloepimetaphyseal dysplasia with joint laxity, leptodactilic type (lepto-SEMDJL), characterized by short stature, flat face, generalized joint laxity with multiple dislocations, and progressive scoliosis and limb deformity. We identified a homozygous KIF22 variant (NM_007317.3: c.146G>A, p.Arg49Gln) in 3 patients from 3 unrelated families. The clinical features appeared similar to those of patients carrying heterozygous KIF22. The homozygous KIF22 variant c.146G>A affected a conserved residue located in the active site and potentially destabilized ATP binding. As lepto-SEMDJL presents phenotypic overlap with chondrodysplasias with multiple dislocations, related to defective proteoglycan biosynthesis, we analyzed proteoglycan synthesis in patient skin fibroblasts and showed a significant decrease of total sulfated proteoglycan content in culture medium, similarly in patients with recessive or dominant KIF22 variants. These data identify a new recessive KIF22 pathogenic variant and link for the first time KIF22 pathogenic variants to altered proteoglycan biosynthesis.


Assuntos
Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Cinesinas/genética , Osteocondrodisplasias/genética , Família , Proteínas de Ligação a DNA
9.
Int Immunopharmacol ; 131: 111613, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489970

RESUMO

BACKGROUND: Bladder cancer (BCa) is a common malignant disease with high recurrence and poor prognosis. Several circular RNAs (circRNAs) have been found to be associated with the malignant progression of bladder cancer (BCa). Here, the aim of this study was to investigate the expression, role and mechanism of circRAPGEF5 in BCa progression. METHODS: Quantitative real-time PCR (qRT-PCR) and immunoblotting were used to detect gene and protein expression levels. In vitro functional studies were performed using CCK-8, colony formation, wound healing and Transwell assays, respectively, and a mouse xenograft tumor model was established to perform in vivo experiments. Bioinformatic predictions as well as luciferase reporter assays and RNA pull-down assays were used to probe circRAPGEF5-mediated competitive endogenous RNA (ceRNA) network. RESULTS: CircRAPGEF5 was significantly overexpressed in BCa patients (p < 0.05), indicating a potential unsatisfactory prognosis. Functionally, knockdown of circRAPGEF5 inhibited the growth, migration and invasion of BCa cells in vitro (p < 0.05), as well as BCa growth in vivo (p < 0.05). Mechanistically, circRAPGEF5 acted as a sponge for miR-582-3p and targeted kinesin family member 3A (KIF3A). In addition, rescue experiments showed that inhibition of miR-582-3p or overexpression of KIF3A reversed the anticancer effects of circRAPGEF5 knockdown on BCa cells (p < 0.05). CONCLUSION: Silencing circRAPGEF5 inhibits BCa proliferation, migration and invasion via the miR-582-3p/KIF3A axis, demonstrating a promising target for BCa-targeted therapy.


Assuntos
MicroRNAs , RNA Circular , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , RNA Circular/metabolismo
10.
Dig Dis Sci ; 69(4): 1274-1286, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446308

RESUMO

BACKGROUND & AIMS: Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS: Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS: Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION: Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais/genética , Proliferação de Células , RNA Interferente Pequeno , Família , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Linhagem Celular Tumoral
11.
Crit Rev Eukaryot Gene Expr ; 34(3): 37-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305287

RESUMO

Gastric cancer (GC) is a main cause of cancer death in the world, and improving the chemotherapy sensitivity can enhance the chemotherapy efficacy of GC. The study objective is to explore the differential KIF18B expression in GC and its effect on GC chemotherapy sensitivity. The KIF18B expression in GC tissues and adjacent normal tissues was analyzed by real-time quantitative polymerase chain reaction. The relationship between differential KIF18B expression and different clinicopathological features was detected. It was found that KIF18B was highly expressed in GC tissues, and KIF18B expression was differential in patients with different clinicopathological features. The upregulation of KIF18B has a positive correlation with the poor therapeutic effect and high KIF18 was associated with lower 3-year overall survival and disease-free survival. The KIF18B-downregulated NCI-N87 cells were constructed and tested by cell counting kit-8 assay and colony formation. Cell migration and invasion were detected by Transwell assay. The xenograft tumor model was established to observe the effect of KIF18B on the efficacy of chemotherapy. The upregulation of KIF18B reduced the chemotherapy sensitivity of GC cells and enhanced their proliferation, migration, and invasion. Silencing KIF18B inhibited tumor growth and promoted chemotherapy efficacy in vivo. In summary, KIF18B inhibitor may have a potential function for improving the efficacy of chemotherapy in GC.


Assuntos
Cinesinas , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulação para Cima , Animais
12.
PLoS Pathog ; 20(2): e1012000, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300973

RESUMO

The early branching eukaryote Trypanosoma brucei divides uni-directionally along the longitudinal cell axis from the cell anterior toward the cell posterior, and the cleavage furrow ingresses along the cell division plane between the new and the old flagella of a dividing bi-flagellated cell. Regulation of cytokinesis in T. brucei involves actomyosin-independent machineries and trypanosome-specific signaling pathways, but the molecular mechanisms underlying cell division plane positioning remain poorly understood. Here we report a kinesin-13 family protein, KIN13-5, that functions downstream of FPRC in the cytokinesis regulatory pathway and determines cell division plane placement. KIN13-5 localizes to multiple cytoskeletal structures, interacts with FPRC, and depends on FPRC for localization to the site of cytokinesis initiation. Knockdown of KIN13-5 causes loss of microtubule bundling at both ends of the cell division plane, leading to mis-placement of the cleavage furrow and unequal cytokinesis, and at the posterior cell tip, causing the formation of a blunt posterior. In vitro biochemical assays demonstrate that KIN13-5 bundles microtubules, providing mechanistic insights into the role of KIN13-5 in cytokinesis and posterior morphogenesis. Altogether, KIN13-5 promotes microtubule bundle formation to ensure cleavage furrow placement and to maintain posterior cytoskeleton morphology in T. brucei.


Assuntos
Citocinese , Trypanosoma brucei brucei , Citocinese/fisiologia , Trypanosoma brucei brucei/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Morfogênese , Proteínas de Protozoários/metabolismo
13.
BMC Med Genomics ; 17(1): 50, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347610

RESUMO

BACKGROUND: We aimed to investigate the involvement of long non-coding RNA (lncRNA) in bacterial and viral meningitis in children. METHODS: The peripheral blood of five bacterial meningitis patients, five viral meningitis samples, and five healthy individuals were collected for RNA sequencing. Then, the differentially expressed lncRNA and mRNA were detected in bacterial meningitis vs. controls, viral meningitis vs. healthy samples, and bacterial vs. viral meningitis patients. Besides, co-expression and the competing endogenous RNA (ceRNA) networks were constructed. Receiver operating characteristic curve (ROC) analysis was performed. RESULTS: Compared with the control group, 2 lncRNAs and 32 mRNAs were identified in bacterial meningitis patients, and 115 lncRNAs and 54 mRNAs were detected in viral meningitis. Compared with bacterial meningitis, 165 lncRNAs and 765 mRNAs were identified in viral meningitis. 2 lncRNAs and 31 mRNAs were specific to bacterial meningitis, and 115 lncRNAs and 53 mRNAs were specific to viral meningitis. The function enrichment results indicated that these mRNAs were involved in innate immune response, inflammatory response, and immune system process. A total of 8 and 1401 co-expression relationships were respectively found in bacterial and viral meningitis groups. The ceRNA networks contained 1 lncRNA-mRNA pair and 4 miRNA-mRNA pairs in viral meningitis group. GPR68 and KIF5C, identified in bacterial meningitis co-expression analysis, had an area under the curve (AUC) of 1.00, while the AUC of OR52K2 and CCR5 is 0.883 and 0.698, respectively. CONCLUSIONS: Our research is the first to profile the lncRNAs in bacterial and viral meningitis in children and may provide new insight into understanding meningitis regulatory mechanisms.


Assuntos
Meningites Bacterianas , Meningite Viral , MicroRNAs , RNA Longo não Codificante , Criança , Humanos , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , 60414 , Análise de Sequência de RNA , Meningites Bacterianas/genética , Meningite Viral/genética , Receptores Acoplados a Proteínas G/genética , Cinesinas/genética
14.
J Biol Chem ; 300(3): 105713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309508

RESUMO

Kinesin-1 is a microtubule motor that transports cellular cargo along microtubules. KIF5A is one of three kinesin-1 isoforms in humans, all of which are autoinhibited by an interaction between the motor and an IAK motif in the proximal region of the C-terminal tail. The C-terminal tail of KIF5A is ∼80 residues longer than the other two kinesin-1 isoforms (KIF5B and KIF5C) and it is unclear if it contributes to autoinhibition. Mutations in KIF5A cause neuronal diseases and could affect autoinhibition, as reported for a mutation that skips exon 27, altering its C-terminal sequence. Here, we combined negative-stain electron microscopy, crosslinking mass spectrometry (XL-MS) and AlphaFold2 structure prediction to determine the molecular architecture of the full-length autoinhibited KIF5A homodimer, in the absence of light chains. We show that KIF5A forms a compact, bent conformation, through a bend between coiled-coils 2 and 3, around P687. XL-MS of WT KIF5A revealed extensive interactions between residues in the motor, between coiled-coil 1 and the motor, between coiled-coils 1 and 2, with coiled-coils 3 and 4, and the proximal region of the C-terminal tail and the motor in the autoinhibited state, but not between the distal C-terminal region and the rest of the molecule. While negative-stain electron microscopy of exon-27 KIF5A splice mutant showed the presence of autoinhibited molecules, XL-MS analysis suggested that its autoinhibited state is more labile. Our model offers a conceptual framework for understanding how mutations within the motor and stalk domain may affect motor activity.


Assuntos
Cinesinas , Humanos , Éxons , Cinesinas/química , Cinesinas/genética , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
15.
EMBO Rep ; 25(4): 1909-1935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38424231

RESUMO

Stabilization of microtubule plus end-directed kinesin CENP-E at the metaphase kinetochores is important for chromosome alignment, but its mechanism remains unclear. Here, we show that CKAP5, a conserved microtubule plus tip protein, regulates CENP-E at kinetochores in human cells. Depletion of CKAP5 impairs CENP-E localization at kinetochores at the metaphase plate and results in increased kinetochore-microtubule stability and attachment errors. Erroneous attachments are also supported by computational modeling. Analysis of CKAP5 knockout cancer cells of multiple tissue origins shows that CKAP5 is preferentially essential in aneuploid, chromosomally unstable cells, and the sensitivity to CKAP5 depletion is correlated to that of CENP-E depletion. CKAP5 depletion leads to reduction in CENP-E-BubR1 interaction and the interaction is rescued by TOG4-TOG5 domain of CKAP5. The same domain can rescue CKAP5 depletion-induced CENP-E removal from the kinetochores. Interestingly, CKAP5 depletion facilitates recruitment of PP1 to the kinetochores and furthermore, a PP1 target site-specific CENP-E phospho-mimicking mutant gets stabilized at kinetochores in the CKAP5-depleted cells. Together, the results support a model in which CKAP5 controls mitotic chromosome attachment errors by stabilizing CENP-E at kinetochores and by regulating stability of the kinetochore-attached microtubules.


Assuntos
Proteínas Cromossômicas não Histona , Cinetocoros , Humanos , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Microtúbulos/metabolismo , Metáfase , Cinesinas/genética , Células HeLa , Mitose , Segregação de Cromossomos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
16.
Crit Rev Eukaryot Gene Expr ; 34(3): 49-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305288

RESUMO

OBJECTIVE: Kinesin family proteins (KIFs) play crucial roles in human tumorigenesis and progression. This study aimed to investigate the expression and association of Kinesin family member 20B (KIF20B) with lung adenocarcinoma (LUAD). METHODS: RNA-seq data from LUAD patients (n = 535) were extracted from TCGA. KIF20B expression was compared between tumor tissues and controls, and between different stages of the disease. Survival and Cox regression analyses were performed, as well as in vitro cellular experiments on A549 cells. RESULTS: KIF20B is upregulated in LUAD tumor tissues compared with controls and is higher in advanced stages. Patients with high expression of KIF20B have shorter survival times. KIF20B is an independent risk factor for the prognosis of LUAD. High KIF20B expression samples were enriched in signaling pathways related to tumor progression. si-KIF20B transfection reduced migration and invasion of A549 cells and increased apoptosis. The expression of p53 and Bax proteins was upregulated by si-KIF20B, while Bcl-2 was down-regulated. DISCUSSION: This study reveals that high KIF20B expression is an independent risk factor for the poor prognosis of LUAD. The inhibition of KIF20B might be of great value for suppressing LUAD progression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Proliferação de Células , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Fatores de Risco , Regulação Neoplásica da Expressão Gênica
17.
Exp Cell Res ; 436(1): 113975, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367657

RESUMO

Kinesin motors play a fundamental role in development by controlling intracellular transport, spindle assembly, and microtubule organization. In humans, patients carrying mutations in KIF11 suffer from an autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphoedema, or mental retardation (MCLMR). While mitotic functions of KIF11 proteins have been well documented in centrosome separation and spindle assembly, cellular mechanisms underlying KIF11 dysfunction and MCLMR remain unclear. In this study, we generate KIF11-inhibition chick and zebrafish models and find that KIF11 inhibition results in microcephaly, chorioretinopathy, and severe developmental defects in vivo. Notably, loss-of-function of KIF11 causes the formation of monopolar spindle and chromosome misalignment, which finally contribute to cell cycle arrest, chromosome instability, and cell death. Our results demonstrate that KIF11 is crucial for spindle assembly, chromosome alignment, and cell cycle progression of progenitor stem cells, indicating a potential link between polyploidy and MCLMR. Our data have revealed that KIF11 inhibition cause microcephaly, chorioretinopathy, and development disorders through the formation of monopolar spindle, polyploid, and cell cycle arrest.


Assuntos
Facies , Linfedema , Microcefalia , Doenças Retinianas , Displasia Retiniana , Animais , Pontos de Checagem do Ciclo Celular/genética , Instabilidade Cromossômica , Deficiências do Desenvolvimento , Cinesinas/genética , Cinesinas/metabolismo , Microcefalia/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Cell Mol Life Sci ; 81(1): 96, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372748

RESUMO

Activation of hepatic stellate cells (HSCs) has been demonstrated to play a pivotal role in the process of liver fibrogenesis. In this study, we observed a decrease in the expression of KIF18A in fibrotic liver tissues compared to healthy liver tissues, which exhibited a negative correlation with the activation of HSCs. To elucidate the molecular mechanisms underlying the involvement of KIF18A, we performed in vitro proliferation experiments and established a CCl4-induced liver fibrosis model. Our results revealed that KIF18A knockdown enhanced HSCs proliferation and reduced HSCs apoptosis in vitro. Mouse liver fibrosis grade was evaluated with Masson's trichrome and alpha-smooth muscle actin (α-SMA) staining. In addition, the expression of fibrosis markers Col1A1, Stat1, and Timp1 were detected. Animal experiments demonstrated that knockdown of KIF18A could promote liver fibrosis, whereas overexpression of KIF18A alleviated liver fibrosis in a CCl4-induced mouse model. Mechanistically, we found that KIF18A suppressed the AKT/mTOR pathway and exhibited direct binding to TTC3. Moreover, TTC3 was found to interact with p-AKT and could promote its ubiquitination and degradation. Our findings provide compelling evidence that KIF18A enhances the protein binding between TTC3 and p-AKT, promoting TTC3-mediated ubiquitination and degradation of p-AKT. These results refine the current understanding of the mechanisms underlying the pathogenesis of liver fibrosis and may offer new targets for treating this patient population.


Assuntos
Células Estreladas do Fígado , Cinesinas , Cirrose Hepática , Animais , Humanos , Camundongos , Cinesinas/genética , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases
19.
Pediatr Neurol ; 152: 189-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301322

RESUMO

BACKGROUND: Hereditary spastic paraplegias (HSPs) are a group of genetically heterogeneous neurodegenerative disorders. Our objective was to determine the clinical and molecular characteristics of patients with genetically confirmed childhood-onset HSPs and to expand the genetic spectrum for some rare subtypes of HSP. METHODS: We reviewed the charts of subjects with genetically confirmed childhood-onset HSP. The age at the disease onset was defined as the point at which the delayed motor milestones were observed. Delayed motor milestones were defined as being unable to hold the head up by four months, sitting unassisted by nine months, and walking independently by 17 months. If there were no delayed motor milestones, age at disease onset was determined by leg stiffness, frequent falls, or unsteady gait. Genetic testing was performed based on delayed motor milestones, progressive leg spasticity, and gait difficulty. The variant classification was determined based on the American College of Medical Genetics standard guidelines for variant interpretation. Variants of uncertain significance (VUS) were considered disease-associated when clinical findings were consistent with the previously described disease phenotypes for pathogenic variants. In addition, in the absence of another pathogenic, likely pathogenic, or VUS variant that could explain the phenotype of our cases, we concluded that the disease is associated with VUS in the HSP-causing gene. Segregation analysis was also performed on the parents of some patients to demonstrate the inheritance model. RESULTS: There were a total of 18 patients from 17 families. The median age of symptom onset was 18 months (2 to 84 months). The mean delay between symptom onset and genetic diagnosis was 5.8 years (5 months to 17 years). All patients had gait difficulty caused by progressive leg spasticity and weakness. Independent walking was not achieved at 17 months for 67% of patients (n = 12). In our cohort, there were two subjects each with SPG11, SPG46, and SPG 50 followed by single subject each with SPG3A, SPG4, SPG7, SPG8, SPG30, SPG35, SPG43, SPG44, SPG57, SPG62, infantile-onset ascending spastic paralysis (IAHSP), and spastic paraplegia and psychomotor retardation with or without seizures (SPPRS). Eight novel variants in nine patients were described. Two affected siblings had a novel variant in the GBA2 gene (SPG46), and one subject each had a novel variant in WASHC5 (SPG8), SPG11 (SPG11), KIF1A (SPG30), GJC2 (SPG44), ERLIN1 (SPG62), ALS2 (IAHSP), and HACE1 (SPPRS). Among the novel variants, the variant in the SPG11 was pathogenic and the variants in the KIF1A, GJC2, and HACE1 were likely pathogenic. The variants in the GBA2, ALS2, ERLIN1, and WASHC5 were classified as VUS. CONCLUSIONS: There was a significant delay between symptom onset and genetic diagnosis of HSP. An early diagnosis may be possible by examining patients with delayed motor milestones, progressive spasticity, gait difficulties, and neuromuscular weakness in the context of HSP. Eight novel variants in nine patients were described, clinically similar to the previously described disease phenotype associated with pathogenic variants. This study contributes to expanding the genetic spectrum of some rare subtypes of HSP.


Assuntos
Esclerose Amiotrófica Lateral , Paraplegia Espástica Hereditária , Criança , Humanos , Lactente , Cinesinas/genética , Mutação/genética , Fenótipo , Proteínas/genética , Estudos Retrospectivos , Paraplegia Espástica Hereditária/genética , Ubiquitina-Proteína Ligases/genética , Pré-Escolar , Adolescente
20.
J Immunol Res ; 2024: 4817924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380081

RESUMO

Background: Ovarian cancer (OV) is characteristic of high incidence rate and fatality rate in the malignant tumors of female reproductive system. Researches on pathogenesis and therapeutic targets for OV need to be continued. This study mainly analyzed the immune-related pathogenesis and discovered the key immunotherapy targets for OV. Methods: WGCNA was used for excavating hub gene modules and hub genes related to the immunity of OV. Enrichment analysis was aimed to analyze the related pathways of hub gene modules. Biological experiments were used for exploring the effect of hub genes on SKOV3 cells. Results: We identified two hub gene modules related to the immunoscore of OV and found that these genes in the modules were related to the extracellular matrix and viral infections. At the same time, we also discovered six hub genes related to the immunity of OV. Among them, KIF26B and CREB3L1 can affect the proliferation, migration, and invasion of SKOV3 cells by the Wnt/ß-catenin pathway. Conclusions: The local infection or inflammation of ovarian may affect the immunity of OV. KIF26B and CREB3L1 are expected to be potential targets for the immunotherapy of OV.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , Matriz Extracelular , Redes Reguladoras de Genes , Imunoterapia , Proteínas do Tecido Nervoso , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Cinesinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...